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Critical temperature shifts for layered periodic systems in l / n  
expansion? 

Paul R Gerber 
Institut fur Physik, Universitat Basel, Basel, Switzerland 

Received 25 August 1977 

Abstract. A classical n-vector model is considered which is infinitely extended in d - 1 
dimensions and periodic of period b in the dth dimension. Asymptotically for large values 
of b the critical temperature is expected to obey a scaling law T,(b)- Tc (a ) -Ab-A .  We 
have calculated the shift exponent A to first order in a l/n expansion for dimensions 
between three and four. To this order the result is consistent with the assertion A = U;' 
where ud is the correlation length exponent of the infinitely extended d-dimensional 
system. From the equivalence between this model and (d - 1)-dimensional quantum 
mechanical systems the behaviour of critical lines near the displacive limit (T, = 0) can be 
derived. 

1. Introduction 

In the past much effort has been spent on calculating critical properties of systems 
which are finitely extended in one dimension but infinitely extended in the remaining 
d - 1 = d dimensions (see Fisher 1971, Barber and Fisher 1973, An-Yang and Fisher 
1975). The deviations from bulk properties seem to depend crucially on the boundary 
conditions imposed on the surfaces of the system. The case of periodic boundary 
conditions which at first sight appears to be rather academic, has recently obtained 
increased importance since it was discovered that quantum mechanical systems which 
undergo a second-order phase transition can in certain circumstances be mapped on a 
classical system with an additional (temperature) dimension in which periodic boun- 
dary conditions are imposed (Hertz 1976, Young 1975, Pfeuty 1976, Morf et a1 1977, 
Beck and Schafer 1976, Gerber and Beck 1977). The period b is here given by the 
reciprocal absolute temperature such that approaching the zero-temperature limit 
corresponds to letting the width of the corresponding finitely extended system go to 
infinity. This situation has been reviewed by Fisher (1971) and for the case of 
quantum effects in the transverse Ising model by Pfeuty (1976). For simplicity we will 
here stick to the finitely extended system interpretation, keeping in mind that the 
quantum situations can be described by re-defining the occurring parameters. 

One of the basic questions is the behaviour of the critical temperature T,(b) as the 
system width b tends to infinity. A general scaling ansarz is (Fisher 1971): 

T,(b)- T,(cc)- b-*, (1.1) 
with the shift exponent A .  
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On the other hand, crossover scaling ideas predict that critical quantities A like, 
e.g., the singular part of the specific heat, can be described by a form 

Ab(T) -  b"X(b"t),  (1.2) 

where the function X depends on the scaled variable b't with the crossover exponent 
4 and t = T - T,(b). There seems to be little doubt that 4 is equal to the reciprocal of 
the correlation length exponent Vd of the infinitely extended system. Regarding the 
value of A, however, the situation appears to be rather unclear. For the spherical 
model Barber and Fisher (1973) obtained the exact result A = 4  for 3 < d < 4 .  
However, for the Ising model in three dimensions ( d = 3 ,  d = 2 )  Allan (1970) and 
Fisher (1971) obtained for A a value which lies somewhere between A = v i 1  = 1.56 
and A = 2 ,  with emphasis on a high value. This led Pfeuty (1976) to develop in detail 
the scaling theories for the cases A #4. On the other hand, Morf et a1 (1977) and 
Beck and Schafer (1976) proposed the spherical model value A = 4 = d - 2 ,  indepen- 
dent of the number of components n of the vector field. In order to clarify the 
situation a little bit we have decided to calculate the shift in the critical temperature to 
first order in the l / n  expansion (see Abe 1973, Ma 1973) starting from the exact 
result for the spherical model (n  = co) of Barber and Fisher (1973). 

2. Model and basic procedure 

Consider a classical n-vector field S(x) in a d-dimensional space. We impose periodic 
boundary conditions in one direction with period b, while in the remaining d = d - 1 
dimensions there are no restrictions 

S(x + b )  = S(x). ( 2 . 1 )  

The effective Hamiltonian of Landau-Ginsburg-Wilson type has the form 

1 
%=-E ( ro+  &) S, . S-, + uo 8 I ddx(S2(x))2, 

2 P X ( P >  

where ~ ( y )  is a cutoff function which behaves like 1 + O ( p 2 )  for small wavevectors p 
while it vanishes fast enough for large p to avoid ultraviolet divergencies in the 
perturbation expansion. The summation over p is meant to be over a continuous 
range in d dimensions but the values in the additional dimension are restricted to 
integer multiples of 27r/b. The critical temperature for the extended system ( b  = a) is 
given in terms of the unperturbed critical propagator 

= X ( P > / P 2  (2 .3 )  
as an expansion in n-' by 

1 1 
n n 

T, (-) = T: +- Ti  + . . . , 

where the expressions for T: and Ti  are in convenient units (see Balian 1975) 
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The expressions @(4) and q ( 4 )  are given by the integrals 

Our aim is to calculate the changes in the expressions (2.5) and (2 .6 )  for T," and T: 
when the system has a finite extension (b < 0;)) in the asymptotic limit of large b. 
Technically speaking we look for the changes in the expressions (2.5)-(2.8) when the 
integral over the dth component of the wavevector is replaced by the discrete sum 
over the values 27rllb. 

The approach of the sum 

to its limit 
..m 

C m = J  d x F ( x )  
--W 

(2 .10)  

can be calculated by using a continuum version of a method advertised by Barber and 
Fisher (1973).  One considers the Fourier coefficients 

m 

f(k) = dx F ( x )  e-ikr, f (0)  = Cm, 
-cc 

(2 .11 )  

to obtain for the sum ( 2 . 9 )  

C b  =I.-*.+ f ( f (bk)+f( -bk) ) .  (2 .12)  
k = l  

For T:  it is straightforward to calculate the change with b. One has from (2 .5 )  

= -2ro(T: ( b ) - ' -  T:  ( ~ 0 ) ~ ~ )  

(2 .13 )  

where the cutoff function has been omitted since one has sufficient convergence. 
Application of (2 .12)  to the sum yields 

(2 .14)  

where s d  = 2 ~ ~ ' ~ / r ( d / 2 )  is the surface of a d-dimensional unit sphere. It is clear that 
the cutoff radius A is unimportant for b-'<< A .  Corrections will be of the order of 
e-bh. The integral over x yields T(d - l ) f ( d  - 1) (5 is Riemann's l-function) leading 
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to a value of ST: which corresponds precisely to the result of Barber and Fisher 
(1973). 

As mentioned we expect the critical temperature shift to obey a scaling law 

ST,(n)=A(n)b-A(") ,  (2.15) 

with the shift exponent A(n).  One may assume that A ( n )  and A ( n )  have the expan- 
sions 

1 1 
n n 

A ( n ) = A o + A 1 - +  . . . , A ( n ) = A o + A I  -+ . . . , 

where the zeroth order is given from (2 .14)  by 

(2 .16)  

(2 .17)  

A o =  d - 2  = v i 1 .  (2 .18)  

Here the exponent Vd is associated with the divergence of the correlation length, in the 
infinitely extended d-dimensional system. The n = 00 model has no transition in two 
dimensions which is mirrored by the divergence of A.  as d approaches two due to the 
pole of [ ( x )  at x = 1 .  

Inserting the expansions (2.16) into the scaling ansatz (2 .15)  yields (see Abe 1973, 
Kadanoff and Wegner 1971) 

ST,' ( b ) = A l b - A o - A I A o b - A o  In b. (2.19) 

From an evaluation of the asymptotic behaviour of ST,' ( b )  for large b one can hence 
obtain a value for A by extracting the terms of the form b-Ao In b, provided the 
expansions (2 .16)  exist. The details of this procedure are presented in the next 
section. 

3. Evaluation of T i  for a finite strip 

For convenience we start by introducing some notation. The wavevector component 
corresponding to the finitely extended dimension will carry a subscript zero and the 
remaining 6-dimensional vector will be barred 

4 = (4. q o ) .  (3.1) 
Furthermore we write 

where q o  in the sum takes on the values 2 d / b  with integer 1. The abbreviation (see 
(2.7)) 

will be used analogously for W ( q )  (see (2 .8)) .  
We consider the expression (2 .6)  for Ta in the light of the form (2.19). Keeping in 

mind our interest in A l ,  one can ignore the changes in T :  which, according to (2.14),  
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will only give contributions to A1 in (2.19). Furthermore, as was the case in (2.14), 
only the infrared contribution to the integrals will be important. 

The asymptotic forms for @(4)  and P(4) for small 4 for dimerisions d < 4 are (see 
Balian 1975): 

@(4>-cp(d)4d-4, (3.4) 

q ( 4 ) - ~ p ( d ) 2 ( 4 - d ) 4 ~ - ~  (3.5) 

with 

(3.6) 

In the infrared region one may thus neglect (T:)-' in the denominator of the 
integrand in (2.6) against @(q). Then the quantity of interest is 

In this expression we have also omitted a contribution of the form 

However it is easily seen that this part gives only contributions to A I  since it has 
precisely the structure of ST: (2.14) as is obvious from the expressions (3.4) and (3.5) 
for @(q) and P(q). 

The sums in (3.7) are now evaluated by applying the procedure of equations 
(2.9)-(2.12). This yields 

where the sum over s runs over the integer multiplies of b except for the value s = 0 
(which is indicated by the prime on the summation sign) while t runs over all the 
integer multiples of b. The quantity C is given by the integral 

dqo q2-d e-i40rB(p, 4, s), (3.10) 

with 

This integral can be treated by residuum integration. Considering first the case s > 0 
one has a contribution B1 from the double pole at p o  = -id 

with the shorthand notation 

A,,.,, = ~ O + ~ E I ( B + E Z I ~ ~ - ~ I ) ,  Ei = +, -. (3.13) 
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The single pole at p o  = qo - ilfi - 41 gives the contribution 

(3.14) 

For negative values of s we can use the relation 

Bi(Pvq, -s)=BT(P,q, (3.15) 

Now the expressions (3.12) and (3.14) are inserted into formula (3.10) for C. Anti- 
cipating a change of the integration variable p = 4 -P' and of the summation index 
t = t'--s in equation (3.9) for the B2 term, we may replace the quantity C (equation 

c(p,4 ,  s, t ) =  /-mdqoq2-d e-i%r(Bl(P, q, s)+eiqoSE2(4-P, q, s)), (3.16) 

(3.10)) by 
m 

to obtain for s > 0 

ip ip q2+48 1 . (3.17) 2d - 7 + i T+ 40 (7- 4 - P  i -j-) 40 ( I  + p s  +-+-) + 
P A++ A+- A++A+- 

It is obvious that c effectively depends only on the absolute values and 4 of the 
vectors @ and 4 as well as on the angle 8 between them. In a somewhat sloppy 
notation we use the same symbol for this function of U, 4,8,  s, t ) .  After a change to 
the integration variable k = 40/4 we obtain 

C(P, a d ,  s, t )  

where we have introduced the abbreviation 
m (-jk)I 

(3.19) 2 ( 2 - d ) / 2  Lk,,(u, w, 4 t ) =  1 dk (1 + k  ) 
-m (U + 1 -ik)"(w - 1 -ik)"' 

In (3.18) U and w have to be set equal to the following expressions: 

P 18-41 w = 1 +:----, U=- lP-41+!-l, 
4 4  4 4  

(3.20) 

The important properties of the quantitites Lk,, are derived in the appendix. Our 
interest lies in the 4-integral in (3.9). It is easy to see from (3.19) that all the I,!,,, 
occurring in (3.18) vanish when 4<< p, so that the integral over 4 in (3.9) converges at a 
lower limit. The singularities at w = 1 (which yield singularities in 8 near e = ?r/2 in 
this limit) are of no importance since they are integrable (the strongest ones occurring 
in 

Now let us consider the limit 4 >>PI which yield U, w << 1. We first consider the case 
t = 0 and postpone the treatment for t # 0. From the expansions for small U and w for 

and I,& compensate each other). 
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the Lfn,n(u, w, 0) which are listed in the appendix one obtains to leading order from 
(3.18) 

C(8, 4, e, S, 0) 

d = B (4, id - 4) - 41-d [ (2d - 7 + (1 + 8s) 
28 P 

(3.21) u + w  2 d - 1  1 
- 4s --+-+ - d d d 

Upon utilising the relations 

U + w = 2814, w - U  -28 cos e/q, (3.22) 

and the averages 

(COS e), = 0, (COS’ e), = (d - l)-’, 

one is left with 

e-ds 2 
28 

(C(p ,  (r, 8, s, O), =B(& i d  -i)-41-d { d ( d  -2)(d - l ) + o  [($‘I}, 
where B(x, y )  is the beta function. 

In leading order one can hence write 

with 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

Now one inserts (3.25) into (3.9) and uses the fact that the form (3.26) effectively sets 
a lower cutoff at 4 = p  to the integration. This then yields for the t = 0 term 

e-P A 
r = u 2 7 ~  d $ c ’  - In y, 5 s 2 p  p 

where A is the natural cutoff in q-space and where u is given by 

(3.27) 

(3.28) 

Remembering (3.15) one can perform the summation over s in (3.27) and change the 
scale by x = bp to obtain 

(3.29) 

In this expression one has a term which is precisely of the form we are looking for. 
Together with (3.7) and (2.14) one can write 

STd = -ST:u In b, (3.30) 
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where we have omitted terms contributing to A1 (see (2.19)). From this expression we 
conclude according to (2.19) that 

(3.31) 

This is our central result. 
We have to discuss the terms for non-zero t in (3.9) which we have omitted so far. 

To this end one has to examine the quantities Lk,,(u, w, q t )  in the limit of small U and 
w, which is conveniently done in the form (3.19). In this integral the integrand is 
analytic in a strip IIm {k } l<  U = 1 + O(u, w). This gives rise to an exponential decay of 
L with 4 of the form 

Lk,, - e-41rlu (3.32) 

Hence by remembering that t is an integer multiple of b we see that this form sets an 
upper cutoff to the 4 integral of (3.9) at a value b-'. Comparing with (3.29) where for 
the t # O  terms the cutoff A would be replaced by b-' we see that no terms of the 
required form b'-d In b can occur. This shows that these terms do not contribute to 
the exponent correction A l .  

4. Conclusion 

From (2.18) and (3.31) we obtain 

1 d d - 1  
A = (d - 2)( 1 +-2 7 sin[br(d - 2)]B(& i d  - f)+O(n-')) .  (4.1) n 7 ~ d  

This is to be compared with the value of v d  to the same order. From the paper by Ma 
(1973) one finds 

v d = -  1--8-- 1 d -  1 2 sin[t.rr(d-2)] + O(n-')). (4.2) d L 2 (  n d n(d-2 )B($d- l , td - l )  

It is a simple exercise in manipulating beta and gamma functions (see Abramowitz and 
Stegun 1970) to verify that 

A = v i 1  + O(n-*). (4.3) 
This satisfactory result leads one to the conjecture that A = v i 1  might be an exact 
relation in the region 3 < d <4 .  This conjecture together with the assertion @ = v i 1  
leads one to postulate that an extended crossover scaling form applies as well to the 
present situation as it does for other crossover problems (see e.g. Pfeuty et a1 1974). 
Such a form then allows us to determine exponents as seen by letting b-' go to zero at 
T,(oo). A quantity K which has the exponent K~ when the critical point is approached 
for the infinite system will diverge like 

(4.4) b"t/"d 

when b is increased to infinity at T = T,(m). As mentioned in the introduction it is 
straightforward to transfer these results to other situations like displacive limits of 
structural phase transitions (Morf er a1 1977, Beck and Schafer 1976) or to the 
transverse Ising model (Young 1975, Pfeuty 1976) by simply renaming the 
parameters. Hence we will not elaborate on that point. 
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Appendix 

We aim to obtain an expansion in U and w valid for small arguments for the integrals 
(3.19) 

with the condition 

m + n  + d  -3-1 >O. 
Writing the integrand as a double inverse Mellin transform (Doetsch 1950) one 
obtains 

L!,,,,(u, w, I )  = - 
u,+im 5 dUu-u dT w-T - 1 

27ri T0-102 27ri uo-im 

dk (-ik)'(l+ k2)1-d/2 W"(T, k)U,(a, k )  e-irk, 64.3)  

where U and W are given by the Mellin transforms 

The integrand paths in (A.3) are determined by the values of go and T~ which have to 
be chosen such that the integrals (A.4) and (A.5) converge for U = uo and T = T ~ ,  

respectively. This yields the conditions 

0 < ao< m, O<TO<n. (A.6) 

Inserting (A.4) and (A.5) into (A.3) one obtains 

1 To+iiu 
L!,,,,(U, W ,  I)=-- dT W-'B(T, n - 7 )  

27ri To-iaa 

x i ~ u o ' i m d ~ ~ - u B ( ~ ,  m-a)ll(m-U, H - T , ~ ) ,  
27ri t~o-iiu 

where 

Idm --U, n -7, I )  

which is analytic in U and T provided 

U + T  < m S n  + d  - 3 - 1. (A.9) 
From (A.7) one can now obtain an asymptotic expansion in ascending powers of U and 
w by shifting the integration paths of U and T to the left, picking up the residues of the 
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poles of the beta functions. This yields in lowest orders 

Lfn,"(U, w, l)= (-1)"[4(m, n, l ) + n w M %  n + 1 , l ) - m u 4 ( m  + 1, 4 SI1 
+ 0 ( u 2 ,  uw, w2) .  (A.lO) 

For convenience we quote the explicit results for a few values of 1, m and n. 

L?J(U, w, 0)- -B(& id -i)[l+ (w - u)(d - l)/d], 

(A. 11) 

These are the values which are needed to the quoted order to pass from equation 
(3.18) to (3.21), 
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